首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18121篇
  免费   862篇
  国内免费   97篇
化学   12315篇
晶体学   108篇
力学   419篇
数学   2850篇
物理学   3388篇
  2023年   116篇
  2022年   102篇
  2021年   242篇
  2020年   377篇
  2019年   397篇
  2018年   234篇
  2017年   236篇
  2016年   600篇
  2015年   555篇
  2014年   644篇
  2013年   1024篇
  2012年   1115篇
  2011年   1248篇
  2010年   744篇
  2009年   659篇
  2008年   1035篇
  2007年   1020篇
  2006年   949篇
  2005年   880篇
  2004年   771篇
  2003年   613篇
  2002年   476篇
  2001年   208篇
  2000年   202篇
  1999年   160篇
  1998年   140篇
  1997年   189篇
  1996年   222篇
  1995年   234篇
  1994年   209篇
  1993年   207篇
  1992年   195篇
  1991年   168篇
  1990年   169篇
  1989年   169篇
  1988年   145篇
  1987年   119篇
  1986年   113篇
  1985年   165篇
  1984年   159篇
  1983年   126篇
  1982年   153篇
  1981年   155篇
  1980年   130篇
  1979年   136篇
  1978年   155篇
  1977年   113篇
  1976年   100篇
  1975年   117篇
  1974年   89篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
In this work, the reactivities of acetonyl and benzoyl radicals in aromatic substitution and addition reactions have been compared in an experimental and computational study. The results show that acetonyl is more electrophilic than benzoyl, which is rather nucleophilic. A Hammett plot analysis of the addition reactions of the two radicals to substituted styrenes clearly support the nucleophilicity of benzoyl, but in the case of acetonyl, no satisfactory linear correlation with a single substituent-related parameter was found. Computational calculations helped to rationalize this effect, and a good linear correlation was found with a combination of polar parameters (σ+) and the radical stabilization energies of the formed intermediates. Based on the calculated philicity indices for benzoyl and acetonyl, a quantitative comparison of these two radicals with many other reported radicals is possible, which may help to predict the reactivities of other aromatic radical substitution reactions.  相似文献   
62.
N-Heterocyclic carbenes (NHCs, :C ) can interact with azolium salts ( C−H+ ) by either forming a hydrogen-bonded aggregate ( CHC+ ) or a covalent C−C bond ( CCH+ ). In this study, the intramolecular NHC–azolium salt interactions of aromatic imidazolin-2-ylidenes and saturated imidazolidin-2-ylidenes have been investigated in the gas phase by traveling wave ion mobility mass spectrometry (TW IMS) and DFT calculations. The TW IMS experiments provided evidence for the formation of these important intermediates in the gas phase, and they identified the predominant aggregation mode (hydrogen bond vs. covalent C−C) as a function of the nature of the interacting carbene–azolium pairs.  相似文献   
63.
Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+, and the reduction of CO to hydrocarbons. The two nitrogenase-based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy-efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V-nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V-nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V-nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one-CO (lo-CO) and multi-CO (hi-CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well-defined state for substrate- or intermediate-trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase-catalyzed reactions.  相似文献   
64.
Two-dimensional NMR spectroscopy is one of the most important spectroscopic tools for the investigation of biological macromolecules. However, due to the low sensitivity of NMR spectroscopy, it takes usually from several minutes to many hours to record such spectra. Here, the possibility of detecting a bioactive derivative of the sunflower trypsin inhibitor-1 (SFTI-1), a tetradecapeptide, by combining parahydrogen-induced polarization (PHIP) and ultrafast 2D NMR spectroscopy is shown. The PHIP activity of the inhibitor was achieved by labeling with O-propargyl-l -tyrosine. In 1D PHIP experiments a signal enhancement of a factor of approximately 1200 compared to standard NMR was found. This enhancement permits measurement of 2D NMR correlation spectra of low-concentrated SFTI-1 in less than 10 seconds, employing ultrafast single-scan 2D NMR detection. As experimental examples PHIP-assisted ultrafast single-scan TOCSY spectra of SFTI-1 are shown.  相似文献   
65.
Mildred Dresselhaus is known for her influential research on the physics of carbon. Her wide‐ranging influence as a physics teacher, although well‐known to her students, has been less thoroughly examined. Exploring how Dresselhaus grew into her role teaching solid state physics at MIT reveals much about how that subfield evolved.  相似文献   
66.

A system of three non-interacting qubits is used as a quantum probe to classify three classical non-Gaussian noises namely, the static noise (SN), colored noise (pink and brown spectrum) and random telegraph noise (RTN), according to their detrimental effects on the evolution of entanglement of the latter. The probe system is initially prepared in the GHZ state and coupled to the noises in independent environments. Seven configurations for the qubit-noise coupling (QNC) are considered. To estimate the destructive influence of each kind of noise, the tripartite negativity is employed to compare the evolution of entanglement in these QNC configurations to each other with the same noise parameters. It is shown that the evolution of entanglement is drastically impacted by the QNC configuration considered as well as the properties of the environmental noises and that the SN is more detrimental to the survival of entanglement than the RTN and colored noise, regardless of the Markov or non-Markov character of the RTN and the spectrum of the colored noise. On the other hand, it is shown that pink noise is more fatal to the system than the RTN and that the situation is totally reversed in the case of brown noise. Finally, it is demonstrated that these noises, in descending order of destructive influence, can be classified as follows: SN > pink noise > RTN > brown noise.

  相似文献   
67.
Spatially resolved functionalization of 2D materials is highly demanded but very challenging to achieve. The chemical patterning is typically tackled by preventing contact between the reagent and material, which brings various accompanying challenges. Photochemical transformation on the other hand inherently provides remote high spatiotemporal resolution using the cleanest reagent—a photon. Herein, we combine two competing reactions on a graphene substrate to create functionalization patterns on a micrometer scale via the Mitsunobu reaction. The mild reaction conditions allow introduction of covalently dynamic linkages, which can serve as reversible labels for surface‐ or graphene‐enhanced Raman spectroscopy characterization of the patterns prepared. The proposed methodology thus provides a pathway for local introduction of arbitrary functional groups on graphene.  相似文献   
68.
69.
Substance P and hemokinin‐1 were predominantly examined by immunoassays with their limitation to differentiate appropriately between both peptides. The use of liquid chromatography coupled with tandem mass spectrometry is a promising, highly selective alternative. Adsorption processes have been identified in preliminary experiments to play a crucial role in the loss of mass spectrometry intensity of both peptides. Therefore, a design of experiments concept was created to minimize nonspecific peptide adsorption. For this purpose, the most critical influencing parameters—(1) the composition of the injection solvent as well as (2) the most suitable container material—were systematically and concordantly investigated. The addition of modifiers, such as formic acid, dimethyl sulfoxide, and organic solvents, to the injection solvent led to a substantial gain of intensity of substance P and hemokinin‐1 compared to the start gradient as an injection solvent. Furthermore, the systematic investigation underlined the high impact of the container material, demonstrating polypropylene as the most favorable material. A conjoint injection solvent optimum was found to determine both peptides simultaneously by the conduction of a sweet‐spot analysis. The experimental design substantially reduced nonspecific peptide adsorption and enabled the simultaneous and selective determination of endogenous substance P and hemokinin‐1 plasma levels.  相似文献   
70.
Tetraarylethenes are obtained by acid-induced coupling of vinyl triazenes with aromatic compounds. This new C−H activation route for the synthesis of aggregation-induced emission luminogens is simple, fast, and versatile. It allows the direct grafting of triarylethenyl groups onto a variety of aromatic compounds, including heterocycles, supramolecular hosts, biologically relevant molecules, and commercial polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号